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Abstract—To enable machine learning in archaeology, data
must encode both observed traces—what we detect on Earth’s
surface today—and their inferred past states. We propose a
signal-based framework where archaeological features are treated
as degraded spatiotemporal signals emitted by past human
activity, and archaeology becomes a form of inverse signal
reconstruction. Unlike traditional typological or period-based
models, this approach models each site’s history as a vector
in a unified 3D spatial manifold with temporal relationships
anchored to a fixed reference (J2000), enabling integration with
astronomical models and signal processing techniques.

Applying this to northwest Ireland, we test signal correlations
between archaeological distributions and hypothesised territorial
boundaries circa (t0+400) (1600 CE). Using contiguity matrices,
kernel density estimation, and K-nearest neighbor graph analysis,
we find significant alignments between spatial signal clusters and
historic boundaries across a 6,000-year span. This suggests that
we can greatly increase the scope, resolution, and accuracy of
our temporal pattern analyses even in noisy, incomplete data.

By framing archaeology as an inverse signal reconstruction
problem, our model aligns with broader signal science paradigms,
including SETI’s search for technosignatures. It enables scalable,
quantitative inference of long-term human territorial behavior
and is extensible to other domains dealing with temporal degra-
dation.

Index Terms—Archaeological signal processing, spatial man-
ifold embedding, temporal-spatial transformation, technosigna-
tures, machine learning, territorial analysis, inverse signal re-
construction, SETI

I. INTRODUCTION

Archaeological data structures remain rooted in 19th-
century typologies and broad temporal labels (e.g., ”Bronze
Age,” ”ringfort”), limiting their compatibility with signal
science and machine learning. These frameworks obscure
uncertainty, mask temporal dynamics, and blend observed and
inferred data, undermining reproducibility. Archaeology needs
to move beyond these paradigms to enable automated analysis
and integration with remote sensing [1].

The non-repeatable nature of excavation—due to its de-
structive process—makes it essential to capture data with
as much detail as possible at the time of recording. While

Fig. 1: Rathra, Co Roscommon, age unknown, a good example
of ancient motion traces (signals) with later interference from
fencelines. Current archaeological data models find it difficult
to represent this temporal complexity effectively

excavation techniques are well developed, recording systems
are not standardised and are incompatible with computational
analysis. Integration with scientific approaches is patchy and
is slowed by resistance to scientific paradigms within the
discipline [2]. Therefore, archaeology still lacks a formal
system to model data as dynamic, evolving systems [3].

Archaeological signals are complex ancient patterns, subject
to natural decay, and masking from vegetation, animal activity,
and later human activities. An example can be seen in Rathra,
Co. Roscommon ??, where a sequence of ancient and modern
features overly each other. While archaeological survey tech-
niques capture sites in detail, they do not capture temporal
data except as discrete layers, creating disconnected snapshots.
The challenge that must be solved to progress archaeological
science, is to create a data model that can represent this
temporal dimension in computable form [4].

We propose reframing archaeological inference broadly
as an inverse signal reconstruction problem. Material traces
(structures, artefacts) are modelled as signals of past human
activity (motion patterns) —subject to environmental decay.
Archaeology must reconstruct these signals to enable proba-



bilistic inference of their time of origin and the patterns of
motion that produced them.

We anchor our model to a fixed celestial reference
frame (J2000) to support integration with astronomical
datasets—enabling interdisciplinary integration. This includes
with palaeontology, systems biology and in line with recent
calls from astronomers in SETI (Search for Extra Terrestrial
Intellignece), notably Douglas Vakoch, for archaeological in-
put in the interpretation of technosignatures, signals created
by technological activity [5]. Vakoch’s work positions archae-
ology as an essential field for detecting and understanding
non-human intelligence.

More prosaically, the challenge of interpreting degraded sig-
nals from intelligent activity is fundamental to understanding
our own evolutionary past. Machine learning is increasingly
used in palaeo-anthropological research on human evolution,
but not always successfully. Studies spanning millions of years
with extremely ambiguous signals will greatly benefit from
ML techniques, but issues with data have led to calls for
interdisciplinary studies with ML expertise included. [6]

II. APPROACH AND DATA DEVELOPMENT

A. Temporal Representation in Current Models

Time remains a core challenge in both archaeology and
computer science. Archaeological models reduce temporal
complexity to epochs, while ML frameworks encode time
abstractly as indexes or sinusoids, disconnected from physical
space. Relational databases struggle with intervals and uncer-
tainty, and deep learning models assume temporal variable
independence—impossible in archaeological data [7].

Deep Learning applications on Irish ringfort data achieved
high accuracy on clean data but poor performance on par-
tial/noisy data, with high false positive rates (roundabouts
identified as sites) due to missing temporal dimensions. False
negatives occur from signal interference, vegetation, or trunca-
tion [9]. GIS temporal representation creates splitting effects
on temporal data, making continuous change modelling diffi-
cult [10].

Spatial autocorrelation challenges geographic and temporal
data by breaking ML’s independent variable assumptions [11].
Both spatial and temporal data present fundamental ML chal-
lenges through autocorrelation combined with non-stationarity,
irregular sampling, and high-dimensional feature spaces vio-
lating independence assumptions. Recent advances (Time2Vec,
Neural ODEs, spatiotemporal Transformers, diffusion models)
improve time series handling but lack physical grounding
[12]. Most treat time as abstract sequence labels, not trajec-
tories, and cannot handle uncertain, missing, or varying time
series data [13]. Our approach contrasts by anchoring time
as spatially-referenced vectors, enabling coherent geometric
reasoning over spatio-temporal fields.

Conceptual Framework

We define a 3D spatial manifold M where archaeological
entities are embedded as spatiotemporal signals. Time as not
treated as a separate dimension, instead we transform temporal

information into spatial relationships by representing each
object’s history as a motion vector extending from its present
surface location on Earth.

Archaeological signals are thus represented as vectors orig-
inating from positions distant in the past and terminating at
their present locations on the Earth’s surface. This approach
is analogous to astronomy, where we observe signals that
originated at sources in the distant past. By anchoring the
model to a fixed celestial reference frame (J2000), we establish
a consistent spatial orientation that abstracts away Earth’s
orbital motion, treating the planet as a static reference point
within the embedded space.

This temporal-to-spatial transformation allows time relation-
ships to be expressed as geometric relationships, enabling the
application of spatial reasoning and physical transformations
to archaeological data while avoiding the complexities of
discrete time slices and temporal databases.

Core Principles:
1) Temporal Elimination: Traditional archaeological

epochs (”Bronze Age”) and computational timestamps
are replaced by spatial vector relationships, avoiding the
limitations of both cultural periodization and discrete
temporal databases.

2) Signal Degradation: Archaeological entities detected
on Earth’s surface are treated as degraded signals of
past human activity, requiring inverse modeling to infer
original states.

3) Typological Neutrality: Cultural labels (”ringfort”, ”bar-
row”) are replaced by measurable feature vectors ϕi,
promoting objective classification.

Formal Definition: Each archaeological signal si is defined
by spatial coordinates xi ∈ Ω (Earth’s surface), temporal depth
τi (referenced to J2000), and observable features ϕi. The signal
field F : Ω → P(S) maps spatial locations to detected signals,
where S = {si}Ni=1.

III. IMPLEMENTATION AND DATA PREPROCESSING

A. Temporal Unification

We collapsed typological and categorical period labels into
scalar temporal estimates referenced to the J2000 epoch (t0).
This converts legacy periodisations into a continuous, signal-
compatible temporal field. Similar to how time-frequency
transforms in signal processing convert temporal signals to
spatial/frequency representations for analysis. We embed ar-
chaeological temporal relationships as spatial coordinates to
enable geometric reasoning over historical processes.

B. Signal Representation

Each archaeological observation is stripped of its typo-
logical label and encoded as a signal defined by location,
geometry, scale, and degradation indicators. Human-readable
names are preserved only for cross-referencing. Probabilistic
interpretations (e.g., function or cultural affiliation) are kept
separate from the observed signal data.



Fig. 2: Map showing the Gaelic confederated territories as they
were at around the year 1600 CE (t0 + 400). The territorial
boundaries were reconstructed using historical maps.

C. Territorial Inference from Signal Field

Using known territorial divisions from circa 1600 CE
(t0 + 400) in northwest Ireland, we applied spatial analysis
techniques to assess whether signal distributions—regardless
of their temporal depth—retain structural alignment with these
boundaries. This included KDE, border-proximity buffers, z-
score analysis, and spatial clustering algorithms.

D. Data Sources and Processing

We used Ireland’s Record of Monuments and Places (RMP),
which includes over 150,000 entries across spatial point data.
Monument types lacking attribute diversity or unique identi-
fiers were excluded. Ordnance Survey barony polygons served
as proxies for Gaelic territorial boundaries at (t0+400), 1600
CE.

• Geometry cleaning ensured topological validity and re-
moval of overlaps.

• Monuments with rough temporal estimates were assigned
values using typological proxies, then converted into
scalar temporal coordinates relative to t0.

• Feature columns were added: buffer distance to nearest
border, soil type (from national soils datasets), and clus-
tering indices.

• Contiguity matrices (Queen adjacency and distance-
based) were constructed for evaluating inter-territorial
connections.

This preprocessing phase ensured a spatially and temporally
structured dataset suitable for signal analysis, pattern detec-
tion, and downstream ML applications.

1) Spatial Analysis Techniques: To test the framework
without relying on typological classification or period labels,

we analyzed signal distributions relative to reconstructed ter-
ritorial boundaries from (t0 + 400).

A buffer of 1,500 meters was applied around each mon-
ument to evaluate proximity to borders—representing transi-
tional zones rather than fixed lines. A signal was considered
to intersect a boundary if it fell within this buffer.

We calculated the proportion of signals near borders by type
and assigned z-scores to assess statistical significance against
random spatial distributions. These values were then joined to
the main signal dataset.

Temporal estimates were approximated using existing typo-
logical labels as rough proxies and converted into scalar values
in years before present (BP). A uniform uncertainty margin
was applied to each signal to reflect dating imprecision.

To visualize long-term patterns, signal distributions were
plotted across the full 6,000-year temporal range. Two plots
produced are reproduced here:

• A bubble map highlighting signal concentrations exceed-
ing one standard deviation from expected distributions.

• A contour map visualizing spatiotemporal clustering near
boundaries, indicating persistent or changing activity
zones over time.

This approach allowed us to model spatial relationships
independently of typology and test whether archaeological sig-
nals align with known political geographies across millennia.

2) Territory validation: To test the relationship between
spatial connectivity and administrative importance, we per-
formed correlation and distributional analyses. Historical
sources indicate that Irish territories were grouped into fed-
erations. Each federation had a central ruling dynasty and a
chief king based in an administrative core territory [14].

To test whether such centres could be inferred from archae-
ological polygon data, we used a spatial weights contiguity
matrix to model inter-territorial adjacency. Territories with
six or more contiguous neighbors were classified as highly
connected and evaluated as potential administrative centers—
those that matched to administrative centres known from
records were given a binary indicator [15].

Kernel Density Estimation (KDE) was used to model the in-
tensity of monument distributions, while K-Nearest Neighbors
(KNN) graphs helped examine proximity-based relationships
and centrality metrics. [11]

3) Ringfort validation: A subset of signals categorised as
ringforts was extracted and a set of features was added,
including substrate types, diameters, border proximity z-scores
and clustering measurements using PySAL. Global Moran’s
I and Local Indicators of Spatial Association (LISA) were
used to detect clustering behaviors and identify statistically
significant spatial patterns and anomalies.

A Random Forest classifier was trained to predict spatial
clustering categories of ringforts, using diameter as the pri-
mary feature.



Fig. 3: Temporal Signal Contour: Activity intensity along territorial boundaries over 6000 years mapped within our 3D spatial
manifold framework. The clear signal from (t0 + 2900) to (t0 + 1400) (900 BCE to 600 CE) coincides with Late Iron Age
and Early Christian territorial changes. The analysis reveals deeper Bronze Age signals and Neolithic activity at (t0 + 5900)
(3900 BCE).

RESULTS

Boundaries as Multi-Temporal Constructs

The temporal contour map (Figure 3) reveals signal clusters
as early as (t0 + 5900) (3900 BCE), indicating long-term
boundary persistence. The method identifies persistent high-
significance bands during Bronze Age ((t0 + 3900) to (t0 +
3400)) and Medieval periods ((t0+1400) to (t0+900)), plus
unexpected Neolithic proto-boundaries. Spatial autocorrelation
tests confirm these patterns exceed random expectations (p ¡
0.001).

The boundaries recorded at (t0+400) (1600 CE) crystallised
during the Late Iron Age to Early Medieval period, with
Bronze Age reorganisation establishing enduring frameworks
and Neolithic markers providing anchor points. The framework
successfully detects invasive patterns—Norman motte castles
show strong negative correlations with traditional boundaries,
correctly identifying this known historical invasion through
physical data alone.

Validation Through Territory Connectivity and Ringfort Anal-
ysis

Territories associated with power centers exhibited signifi-
cantly higher connectivity (5.25 vs 2.94 neighboring territo-
ries, p = 0.003), with strong correlation between administrative
importance and spatial connectivity (r = 0.685).

Random Forest classification (83–94% accuracy) revealed
ringfort clustering behaviors encoding the same territorial
logic detected temporally. Ringforts within 1.5 km of later
boundaries were 22% larger (30.3 m vs 24.8 m diameter)
and predominantly HH-type clusters (large-large), mirroring
temporal contour high-Z boundary signals at (t0 + 1900) to
(t0+900) (100 CE–1100 CE). Regional patterns show Cavan’s
dense HH clusters (0.71/km2) versus Donegal’s LL dominance

TABLE I: Ringfort spatial signatures

Region Cluster Type Density (km−2)

Cavan HH (Large-Large) 0.71
Donegal LL (Small-Small) 0.07
Leitrim Mixed 0.54

(a) Tower houses (red
dots) (t0 +600) to (t0 +
400)

(b) Ringforts (t0+1600)
to (t0 + 1100)

Fig. 4: Signal persistence: later tower houses anchor bound-
aries established by earlier ringfort clusters, despite 700-year
gap.

(small-small, 0.07/km2), reflecting different federation histo-
ries (Table I).

The ringfort size-clustering patterns spatially ”freeze” the
same territorial dynamics detected temporally, with HH clus-
ters marking persistent boundaries and LL zones reflecting
territorial interiors. This validates our signal model’s capacity
to decode multi-period territorial logic embedded within the
spatial manifold framework, supporting the idea that territorial
frameworks visible at (t0 + 400) have deeper origins.
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Fig. 5: Temporal evolution of signals showing the burst of activity between (t0 + 2900) and (t0 + 1400) (900 BCE-600
CE). Note the negative correlation of Norman mottes, enabling identification of invasive patterns while confirming authentic
territorial signals.

IV. DISCUSSION

Results align with known historical patterns, with inde-
pendent GIS validation confirming inferred structures within
our 3D spatial manifold framework. Despite limited data
and poor temporal resolution, the approach rapidly identifies
broad historical patterns while revealing both continuities and
discontinuities—notably the complete absence of border as-
sociations with Norman mottes, correctly identifying invasive
territorial patterns.

The framework enables three key capabilities: anomaly
detection through negative correlations (Norman mottes and
monastic round towers avoid boundaries, reflecting invasion
patterns and functional monastery placement); temporal re-
silience where high-Z boundaries function like technosigna-
tures, with Neolithic signals ((t0+5900), Z = 5.11) persisting
across millennia, analogous to SETI’s enduring technosigna-
ture hypothesis [16]; and universality through culture-neutral
geometric description rather than typological categories.

This model enables archaeology to access signal science
mathematics—describing sites using signal fields, noise ker-
nels, and degradation transformations within the 3D manifold
framework. The alignment of later tower houses with earlier
ringfort clusters demonstrates inherited organisational logic,
suggesting signal filtering could theoretically subtract later
features to infer earlier boundary states through automated ML
models.

Critically, each Gaelic federation exhibits distinct signal
fingerprints, supporting bottom-up territorial evolution rather
than imposed periodisation. Traditional ”Early Medieval ring-

0Boundary proximity defined as within 1.5 km of territory edges. HH/LL
clusters significant at p¡0.01 (Local Moran’s I).

forts” and ”Late Medieval tower houses” appear as different
manifestations of persistent spatial logic encoded within the
manifold structure. This paradigm provides a generalisable
framework for detecting intentional spatial patterning across
time—applicable to prehistoric landscapes, colonial cartogra-
phies, or planetary surfaces.

V. LIMITATIONS AND FUTURE DIRECTIONS

Despite strong results, several limitations constrain this
study’s scope: incomplete data coverage from unavail-
able datasets (Northern Ireland records) creates edge effects,
while inconsistent RMP survey records lack sensor data and
standardised measurements; temporal undersampling where
most signals lack dating, with typology-based (t0 +n) values
introducing uncertainty; and methodological inconsistencies
from varying survey methods and sparse paired observations
between remote-sensed and excavated records.

Future work should integrate radiocarbon-dated sites whose
standardised format aligns with our signal-based approach,
addressing the core challenge of training algorithms without
comparing observed signals sobs(x) to original forms. Archae-
ology can benefit from probabilistic dating using measurable
signal properties (size, material, degradation) as temporal
priors, alongside techniques like OLE (Optimal Linear Esti-
mation) for estimating phenomenon occurrence from partial
records [17].

Field practices should adapt by recording core attributes
(position x, dimensions, materials) and publishing raw signal
observations alongside interpretations. The temporal-to-spatial
embedding within the manifold framework promises ML sep-
aration of different signal components in complex sites, en-
abling reverse reconstruction—a form of ”error correction” to



reveal original signals at inception, greatly enhancing archae-
ological reconstruction through more complex and accurate
inference of the past.

VI. CONCLUSION

Traditional typological and era-based data structures ob-
struct computational archaeological inference at scale. Our
signal-based approach offers a scalable alternative grounded
in physical principles, designed for inference and uncertainty
quantification within a 3D spatial manifold framework where
time becomes spatial distance along motion vectors.

This study demonstrates that significant archaeological fea-
tures can be recovered independent of historical records,
suggesting this approach can support extensive research while
dramatically increasing data handling scale. The signal field
paradigm offers three key advantages: explicit degradation
modelling enables learning from partial sites; unified language
integrates diverse data types from LiDAR to ancient texts;
and automated pattern recognition through advanced ML tech-
niques. Most importantly, it transforms archaeological data
into formats interoperable with planetary and astronomical
sciences.

Methodologically, this enables bottom-up categorisation
where ML groups features by fundamental physical attributes
rather than imposed typologies, naturally accommodating ar-
chaeological challenges of interference, masking, and high
false positive rates. By creating structured, typology-neutral
data that separates observations from inferences and models
time as spatial vectors, we transform archaeological records
into dynamic, queryable spatiotemporal fields compatible with
modern signal processing and ML frameworks.

A. Abbreviations and Acronyms

GIS Geographic Information System
LiSA Local Indicators of Spatial Association
ML Machine Learning
KDE Kernel Density Estimation
KNN K-Nearest Neighbor
RMP Record of Monuments and Places (Ireland)
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